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ABSTRACT 
This paper evaluates the use of simulations to investigate wind turbine mass and aerodynamic imbalances. Faults 

caused by mass and aerodynamic imbalances constitute a significant portion of all faults in wind turbine. The 

aerodynamic imbalances effects such as deviations between the three blades pitch angle are often underrated and 

misunderstood. In practice, for many wind energy converters the blade adjustment is found to be sub-optimal. The 

dynamics of a model wind turbine was simulated in three different scenarios that are normal operating conditions, 

blade imbalance, and aerodynamic imbalance. Blade element momentum method was used to determine the effects 

of blade deviations. The blade imbalance was simulated by scaling the mass density of one blade, which creates an 

uneven distribution of mass with respect to the rotor. The results showed that an aerodynamic imbalance fault varies 

with rotor speed and wind velocity. They also reveal the extent of energy loss and additional loads. These conclude 

that, unlike mass imbalance, aerodynamic imbalance can’t be eliminated by counterweights. The balancing of the 

rotor requires a method to determine its imbalances. This paper proposes also a methodical system for the 

reconstruction of two types of imbalances that are, mass and aerodynamic imbalances from pitch angle deviation. 

The methodical system with simple finite element will be based on the inversion of the (nonlinear) operator equation 

that links the imbalance distribution of the rotor to its vibrations during operation of the wind turbine. This 

methodical system will enable to eliminating aerodynamic imbalances which leads to a maximized life time of 

blades, drive train, main frame and tower. 

KEYWORDS: Wind turbine, mass and aerodynamic imbalance, blade, pitch angle, regularization. 

 

     INTRODUCTION 
In the development of wind energy extraction, the 

topic of aerodynamic imbalances of wind turbine is 

of serious importance for the operation, safety, and 

durability of the wind turbine. Imbalance faults 

constitute a significant portion of all faults in wind 

turbine [3]. A common imbalance fault in wind 

turbine is blade imbalance. A blade imbalance can be 

caused by errors occurred in manufacturing and 

construction, icing, deformation due to aging, or wear 

and fatigue during the operation of the wind turbine. 

As many wind turbines are situated on high towers, 

installed in remote rural areas, and distributed over 

large geographic regions, inspection and maintenance 

for the wind turbines requires significant effort and 

cost. Engineers have reported that the operation and 

maintenance cost can account for 10–20% of the total 

cost of energy for a wind project [1]. Moreover, wind 

on the supporting tower of the wind turbine, which 

may lead to fractures and possible collapses [4] of the 

tower. In common practice, imbalance measurements 

are often carried out only with respect to an overall 

value of rotor imbalance. The fact is that the rotor 

imbalances can have different characteristics as 

explained above. It is a meaningful reason to 

determine whether the imbalance’s origin lies in an 

uneven distribution of the rotor mass that is mass 

imbalance or in a deviation of the aerodynamic 

properties of the three blades, for instance different 

settings of the blade pitch angle that is aerodynamic 

imbalance. The distinction between mass imbalance 

and aerodynamic imbalance is a prerequisite for 

finding suitable measures of optimization. The main 

reason for aerodynamic imbalance is a relative 

deviation of the pitch angles of the blades as stated 
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above. This can only be eliminated by a correction of 

those angles. Additional masses are not much helpful 

here [5]. Practically, both types of imbalances are 

frequently observed both separately and in 

combination. Often, the detection of imbalances is 

based on spectral analysis and order analysis methods 

[6]. Another technique is to monitor the power 

characteristic [7], whereby power mean values are 

observed, and deviations from faultless conditions are 

used for the calculation of alarm limits. 

Unfortunately, this requires a learning phase under 

faultless conditions. This also holds for other signal 

processing methods [6]. Another disadvantage is the 

fact that the amount of the imbalance, for instance 

absolute value and location of a mass imbalance or 

the deviation of one or more pitch angles, is not 

computable. In the present paper we consider a model 

that allows for a reconstruction of both mass 

imbalances and aerodynamic imbalance caused by 

deviations in pitch angles at the same time. Since 

aerodynamic imbalances also cause vibrations in 

axial directions and torsional vibration around the 

tower axis; we have expanded our turbine model in 

these dimensions. To describe the forces and 

moments from aerodynamic imbalances we have 

used the blade element momentum method. Due to 

the blade element momentum method, the direct 

problem of relating the imbalance cause (here the 

pitch angles deviation and a mass imbalance) to the 

vibrations of the turbine becomes non-linear. 

However, the regularization techniques for 

solving the inverse problem also apply to 

non-linear problems. To ensure a good imbalance 

reconstruction we observed that the initial value 

should already be a fairly good idea for the mass 

imbalance, which we obtained by our method 

described above that will be developed in details in 

this paper by assuming the absence of aerodynamic 

imbalances. We reconstructed a good idea for the 

mass imbalance from the lateral vibrations neglecting 

the influence from the pitch error. The result is surely 

not the correct mass imbalance but serves very well 

as an initial value for the reconstruction of both 

imbalance causes. 

WIND TURBINE STRUCTURAL MODEL 

Mass and Stiffness Matrix 

While thinking about reconstructing imbalances from 

vibration measurements we must be able to handle 

the other direction, like to compute the resulting 

vibrations of the wind turbine tower for a given 

imbalance cause. 

In order to establish appropriate mathematical 

equations we have to first derive simple assumptions. 

First we assume that the wind turbine is a flexible 

shaft (the tower) with an additional mass (the nacelle 

and the rotor) at the top point, where one part of that 

mass (the rotor) rotates with a rotational frequency. 

The movement of such a shaft is explained by a 

partial differential equation in time and space. Using 

finite element methods, the energy formulation can 

be transformed into a system of ordinary differential 

equations. The ordinary differential equation system 

connecting dynamical loads and object displacements 

has the form: 

M
𝜕2𝑢

𝜕𝑡2+Su(t)=p(t) 

Where M is the mass or inertia matrix, S the stiffness 

matrix, u the vector of the degree of freedom and p 

the load vector. In the finite element method 

approach, the wind turbine is divided into elements 

which are in our case hollow cylinders. The 

movements in lateral or z-direction, in axial or y-

direction and torsional movements around the x-axis 

(see Figure 1) for the coordinate system are 

considered. There are no movements in x-direction 

since the tower is supposed to be rigid against shear 

forces. 

For each node we only consider the degree of 

freedom (, βz). In order to construct the mass and 

the stiffness matrix each element is treated 

separately. The degree of freedom of the bottom and 

the top node of the ith element are collected in the 

element degree of freedom vector. 

 

𝑢𝑒
𝑖 =0i  βz0i  i   βzi]

T. 

The derivation of the element mass and stiffness 

matrix Me and Se uses four shape functions scaled by  
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Figure 1. Model of wind turbine. 

the degree of freedom of an arbitrary point x of the 

element. 

It is given in detail in [8]. We only want to present 

the final mathematical expressions for the element 

matrices, 

Me=
µ𝐿𝑒

420

[
 
 
 

156 −22𝐿𝑒 54 13𝐿𝑒

−22𝐿𝑒 4𝐿𝑒
2 −13𝐿𝑒 −3𝐿𝑒

2

54 −13𝐿𝑒 156 22𝐿𝑒

13𝐿𝑒 −3𝐿𝑒
2 22𝐿𝑒 4𝐿𝑒

2 ]
 
 
 

 , 

       Se=
𝐸.𝐼

𝐿𝑒
3

[
 
 
 

12 −6𝐿𝑒 −12 −6𝐿𝑒

−6𝐿𝑒 4𝐿𝑒
2 6𝐿𝑒 2𝐿𝑒

2

−12 6𝐿𝑒 12 6𝐿𝑒

−6𝐿𝑒 2𝐿𝑒
2 6𝐿𝑒 4𝐿𝑒

2 ]
 
 
 

 

 

The length of the element that will be discussed in 

the next paper is represented by Le. E is Young’s 

modulus, which is a material constant that is found in 

a table. Our elements are assumed to be circular 

beam sections. The moment of inertia I is given by:  

I=
𝜋

64
(𝑑𝑒,𝑜𝑢𝑡

4 -𝑑𝑒,𝑖𝑛
4 ) where 𝑑𝑒,𝑜𝑢𝑡,𝑑𝑒,𝑖𝑛 are outer and 

inner diameter of the beams section respectively. μ is 

the translatorial mass per length μ = ρ.A, where ρ is 

the density of the material. A=
𝜋

4
(𝑑𝑒,𝑜𝑢𝑡

2 -𝑑𝑒,𝑖𝑛
2 ) is the 

annulus area. Creating the full system matrices S and 

M, the element matrices Se and Me are combined by 

superimposing the elements affecting the upper node 

of the ith element matrix with the ones belonging to 

the lower node of the (i + 1)st element matrix. The 

sum of rotor mass and nacelle mass m needs to be 

added to the last but one diagonal element of the full 

mass matrix. 

 

INVERSE PROBLEM 

Within this Section, we have established the theory of 

treating (non-) linear ill-posed problems. We assume 

that the connection of two terms f and g such as an 

imbalance and the displacements resulting from that 

imbalance, is described by an operator A: 

A.f=g 

The problem is called ill-posed, if the solution f does 

not depend continuously on the data g. The forward 

problem while the determination of f for given g is 

referred to as the inverse problem. In practical 

applications the exact data of g are not known but a 

measured noisy version gδ of that data. We assume 

that the noise level is bounded by an unknown 

number δ, that is ||g- gδ||≤ δ, then (provided the 

inverse A−1 exists) fδ = A−1gδ might be an arbitrarily 

bad approximation to a solution of A.f=g. To obtain a 

stable solution, we used the so called regularization 

methods[15]. The general idea is to approximate the 

discontinuous inverse operator by a family of 

continuous operators Tα. The computation of an 

imbalance from vibration/displacement data is an 

inverse problem. If the following three conditions are 

fulfilled[18], the Inverse Problem is called well 

posed: 

 

x 


Rotor 

Nacelle 

Element 

length Le 

node 4 

node 3 

d_out 

node 1 

y 

z 

node 2 

d_in 

node 5 
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(a) For all data of g there exists a solution f. 

(b) The solution of f is unique. 

(c) The solution of f depends continuously on the 

data g. (A−1 is continuous.) 

 

The last condition ensures that small changes in the 

data g result in small changes in the solution f. A well 

posed inverse problem can be solved by applying the 

inverse operator to the data: 

f = A−1g. 

If one of the conditions is violated the inverse 

problem is called ill-posed. The regularization 

parameter α has to be chosen such that 

lim
𝛿→0

𝛼(𝛿, 𝑔𝛿)=0 holds. For nonlinear operators, 

equation A.f=g might have several solutions[15]. 

Thus we choose the concept of a 𝑓 minimum-norm 

solution as if we are looking for a solution closest to 

a priory given function 𝑓. A widely used example for 

a regularization method is Tikhonov’s regularization 

where the operator Tα is given by 

Tαg
δ=𝑓𝛼

𝛿=argmin
𝑓

𝐽𝛼(𝑓) 

with the Tikhonov functional is given by 

𝐽𝛼(𝑓)=|| gδ-Af||2+α||f-𝑓||2 

where A denotes a matrix. For the determination of 

the regularization parameter α we will use Morozov’s 

principle. The computation of g for given f is called 

the well-known posteriori parameter choice rule of 

Morozov’s discrepancy principle where α is chosen. 

δ≤|| gδ-A𝑓𝛼
𝛿 ||2≤cδ 

holds [9,10]. A classical approach to minimize the 

functional Jα(f) is the use of gradient methods. The 

gradient of the Tikhonov functional is given by 

Tα = (A*A + αI)−1A*, 

where I is the identity and A* denotes the adjoint 

operator of A. In case A is a matrix, A* is the 

transpose of A. The application of the discrepancy 

principle requires the computation 

of the approximate solution 𝑓𝛼
𝛿  for a chosen α first. 

Afterwards δ≤|| gδ-A𝑓𝛼
𝛿 ||2≤cδ is checked and α has to 

be 

 

 

 

 

 

 

 

 

 

Figure 2. Regularization error 

changed if the condition does not hold. All a- 

posteriori parameter choice rules depend on the data 

error level δ and the data gδ. Very popular are 

heuristic parameter choice rules, where the 

regularization parameter is independent of the noise 

level δ. This is the fundamental estimate for a 

regularization strategy[16]. We illustrated this 

estimate by constructing a regularization strategy for 

the numerical differentiation problem using the 

central difference formula and the step size α as a 

regularization parameter. 

IMBALANCES DETERMINATION 

Imbalances determination from measurements of the 

induced vibrations or displacements is an inverse 

problem as stated above. 

Mass Imbalance 

In order to evaluate the magnitude of the mass 

imbalance, measurements of the tower-nacelle 

vibrations were performed after minimizing the 

aerodynamic imbalance by blade angle adjustment. 

Then, the total imbalance calculated from the 

measured vibration amplitude is equal to the mass 

imbalance. The knowledge of the mass and stiffness 

matrix provides us with a connection of the loads 

from imbalances p and the resulting displacements u 
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in the nodes of our model via equation 

M
𝜕2𝑢

𝜕𝑡2+Su(t)=p(t).A mass imbalance can be described 

by a mass m that is located at a distance r from the 

rotor center and has an angle φ to a certain zero mark 

of the rotor[13][14], If the rotor revolves with 

revolutionary frequency f, the mass imbalance 

induces a centrifugal force of absolute value ω2mr, 

with the angular velocity ω = 2πf. The force or load 

vector is given by: 

p(t)= ω2mr𝑒𝑖(𝜔𝑡+𝜑)=p0 ω
2𝑒𝑖𝜔𝑡 

where p0=mr𝑒𝑖𝜑 defines the mass imbalance in 

absolute value and phase location. Harmonic loads of 

the form p(t)= ω2mr𝑒𝑖(𝜔𝑡+𝜑)=p0 ω2𝑒𝑖𝜔𝑡 cause 

harmonic vibration u = u0e
iωt of the same frequency 

ω. By inserting u, its second derivative and p = p0e
iωt 

into equation M
𝜕2𝑢

𝜕𝑡2+Su(t)=p(t), time dependency 

cancels out and we get an explicit solution for the 

vibration amplitudes u0: 

u0 = (−M+ ω−2S) −1p0. 

The matrix (−M+ ω−2S) −1
 would define our forward 

operator in equation A.f=g if we would assume that 

the vibration amplitudes could be measured in every 

node of the model. Usually this is not possible; 

measurements are taken in the nacelle which is 

represented by the last model node. Hence f= p0, g = 

u0 the displacement of the last node, and A is just the 

element in the last but one row and last but one 

column of (−M+ ω−2S)−1. 

Note that The forces caused by this mass are gravity 

and centrifugal force ω2mr. The projections of this 

force into the z- and x-axis are: 

 

(Fc)z=Fccos(ωt + φ + φm) 

(Fc)x=Fcsin(ωt + φ + φm) 

 

where, t is time variable, and φ is the angle between 

blade A and the x-axis, (mr,ϕm) are absolute value 

and angle w.r.t. blade A of the mass imbalance, 

ω=2πf is the angular frequency (note: wind turbine 

rotates clockwise seen from the wind), ϕ=
4π

3
 is the 

angle between blades. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Mass imbalance model. 

Since the rotational plane has a distance L( distance 

from hub to nacelle midpoint of x-axis) to the tower, 

the forces (Fc)z and (Fc)x produce moments around 

the x- and the z-axes with respect to the tower too 

Mx
1 = (Fc)z · L 

Mz
1= (Fc)x · L 

 

Furthermore, the gravity force of the point mass also 

creates a small moment around the z-axis. 

Unfortunately, this moment is not taken into account. 

Aerodynamic (rotor) Imbalance from pitch 

angle deviation 

The impact of rotor imbalance is found on all 

components. Rotor imbalances not only lead to the 

acceleration of component wear, but also to serious 

damage to major components such as blades, 

gearboxes, bearings and main frames. The extent of 

the damage depends on the level of the imbalance, as 

well as the period of time a turbine operates with a 

certain imbalance. The main cause for rotor 

imbalances is a deviation between the pitch angles of 

the blades, that may occurs from assembling 

inaccuracies[14]. Based on the wind conditions, even 

a small deviation of one of the pitch angles can cause 

large forces and moments to be transferred into the 

rotor. Operators should bear in mind that 

aerodynamic imbalances have a high damage 

potential due to their strong excitation of torsional 
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vibrations. Furthermore, aerodynamic imbalances 

will reduce the energy yield of the wind turbine 

significantly. To describe the aerodynamic loads on a 

wind turbine, we have employed the well-known 

blade element momentum theory [11, 12]. In the 

blade element momentum theory, we divide the 

blades into a finite number of elements which are 

sections of the blades into annulus segments with the 

center at the root of the blades. The cross section of 

each element is called “airfoil”, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Thrust forces on the rotor blades. 

The forces depend on the pitch angle of the blade, the 

airfoil data, the angle of attack of the wind, and the 

relative wind velocity, as well as a lift and drag 

coefficient table. The distributed forces are summed 

up to an equivalent normal force Fi with a distance li 

from the rotor center as well as an equivalent 

tangential force Ti. 

Since the airfoil data, the angle of attack of the wind, 

and the relative wind velocity, as well as a lift and 

drag coefficient; we can calculate the thrust forces F 

and the tangential forces T according to the blade 

element momentum method, The local pitch angle θ 

for each blade element, which is the angle between 

chord and the plane of rotation, is the sum of the 

adjusted pitch angle θp at the blades root and the twist 

of the blade β: 
 

θ= θp+ β 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Tangential forces on the rotor blades 

The results of this procedure are forces on each of the 

blades distributed over all blade elements as stated 

before. 

The force to the rotor in the axial (y-) direction is 

calculated by: 

Fy = F1 + F2 + F3. 

The moments induced by this forces are given by: 

Mx
1 = F1l1sin(ωt+φ)+F2l2sin(ωt+ϕ+φ )+F3l3 

sin(ωt+φ+ 2φ) 

Mz
1=F1l1cos(ωt+φ)+F2l2cos(ωt+ϕ+φ )+F3l3 

cos(ωt+φ+2 φ) 

Note that if all blades have the same pitch angle, we 

have F1 = F2 = F3 and l1 = l2 = l3. This means that the 

moments Mx
1 and Mz

1 vanish. The projection of the 

total tangential force T=T1+T2+T3 onto the z-axis and 

the x-axis is given by:  

TZ=T1cos(ωt+φ)+T2cos(ωt+ϕ+φ)+T3cos(ωt+φ+2φ) 

Tx=T1sin(ωt+φ)+T2sin(ωt+ϕ+φ)+T3sin(ωt+φ+2φ) 

 

As mentioned before we have a small distance L 

between rotor plane and tower center, thus Tz and Tx 

also produce moments around the x- and the z-axes: 

Mx
𝑇 =Tz.L , Mz

T= Tx.L 
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From the formulas Fy = F1 + F2 + F3, Mx
𝑇 =Tz.L , Mz

T= 

Tx.L we can describe the load vector p(t) in equation 

M
𝜕2𝑢

𝜕𝑡2+Su(t)=p(t), which has only entries at the last 

node. We recall that the node has the degree of 

freedom (ʋ, βx, βy, βz), therefore 

p = (0, · · · , 0, Fy, Fz,Mx,My,Mz)
T, 

with Fz = Tz+Fc(z), Mx= Mx
1+Mx

2+Mx
3 and Mz= 

Mz
1+Mz

2+Mz
3. We notice that My is converted into the 

rotational movement and finally into electrical energy 

that’s why it doesn’t add any contribution to the load 

vector. 

BALANCING 

By Starting from the pitch angles of the three blades 

(θ1, θ2, θ3), and from the characteristics of a mass 

imbalance (mr, ϕm) and assuming the given values for 

angular speed ω = 2πf, wind speed, and airfoil data. 

We have all the tools to determine the corresponding 

imbalance load p using the blade element momentum 

method for the pitch angle deviation and by 

projecting[13]  p(t)= ω2mr𝑒𝑖(𝜔𝑡+𝜑)=p0 ω2𝑒𝑖𝜔𝑡 into 

the x- and the z-axis. Solving M
𝜕2𝑢

𝜕𝑡2+Su(t)=p(t) 

produces the resulting displacements u. Therefore it 

is necessary to restrict our solution to degree of 

freedom. We notice that the restricted vibration is g = 

usensor. The final forward operator A that relates the 

imbalances causes to the vibrations is the projection 

of: 

A(θ1, θ2, θ3, mr, φ) = g. 

Unfortunately, this operator is nonlinear due to the 

blade element momentum method. This property will 

determine the possible solution methods for the 

inverse problem of reconstructing (θ1, θ2, θ3, mr, φ) 

from measurements of g. For a known or estimated 

noise level δ of the measurements we can compute 

the solution (𝜃1, 𝜃2, 𝜃3, mr,φ)𝛼
𝛿 as the minimizer of 

the Tikhonov functional 𝐽𝛼(𝑓)=|| gδ-Af||2+α||f-𝑓||2 

Since A is a nonlinear operator, the minimization 

methods have to be employed to find the minimizing 

element, like the Matlab implemented routines like 

fminsearch. fminsearch which uses the simplex 

search method which is a direct search method. The 

regularization parameter α has been chosen 

iteratively using Morozov’s discrepancy principle 

δ≤|| gδ-A𝑓𝛼
𝛿 ||2≤cδ. The computational simulations and 

results have been obtained after we have tested the 

performance of the reconstruction technique for a 

Bereket Enerji’s turbine of the type SINOVEL 

SL1500/82-1.5MW installed at Uşak wind power 

plant with 100 m tower height and artificial data 

implemented. We achieved the artificial data by 

employing the forward operator A(θ1, θ2, θ3, mr, φ)= 

g for a given imbalances situation. The exact 

vibration data were disturbed by an additive and 

multiplicative error in order to simulate the noise that 

arises in measurement. The following parameters 

have been employed: 

-Construction of mass and stiffness matrix using the 

technical parameters of the SINOVEL SL1500/82-

1.5MW(eigenfrequency 0.317 Hz) 

- Setting of a 20 pitch angle deviation at the blade C 

and a mass imbalance of 500 kgm at angle φ=
4π

3
 

=2400: [𝜃1, 𝜃2, 𝜃3,mr,φ]=[0,0,2,500,240] 

-rotational speed f=17.4rpm 

-Adding 10% noise to the data to simulate the 

measurements 

-Calculate an approximate solution 

(𝜃′1, 𝜃′2, 𝜃′3, mr′,φ′) by minimizing the functional 

𝐽𝛼(𝑓)=||gδ-Af||2+α||f-𝑓||2 with an appropriate 

regularization parameter 

-Rotor diameter (m) is 82.9m,  

-Swept area (m2) is 5398m2 

-Height of hub (m) is 100m 

-Average wind speed is 7.5m/s 

-Wind Turbine class IECII / IECⅢ 

For our computation tests, we set the exact 

parameters [𝜃1, 𝜃2, 𝜃3, mr,φ]=[0,0,2,500,240] We 

have employed Tikhonov regularization for all kind 

of data. However, in practice only the displacements 

in y- and z- direction at the top of the tower are 

available. In the first attempt, the result is not the true 

mass imbalance but a sufficiently accurate initial 

estimate for the simultaneous reconstruction was 

carried out as a second step[19]. Tikhonov 

regularization with α = 10−6 was used for all 

reconstructions. The error is split into two parts 

related to aerodynamical and mass imbalances: 
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||(𝜃1,𝜃2,𝜃3)−(𝜃′
1,𝜃′

2,𝜃′
3)||

||(𝜃1,𝜃2,𝜃3)||
.100%   

and 

||𝑚𝑟.𝑒𝑖𝜑−𝑚𝑟′.𝑒𝑖𝜑′||

||mr.𝑒𝑖𝜑||
.100% 

Here (𝜃′1, 𝜃′2, 𝜃′3, mr′, φ′) refers to the reconstruction 

and (𝜃1, 𝜃2, 𝜃3, mr,φ) is the exact parameter vector. 

Figure 6. Imbalance vibration and residual 

vibration across y-axis (on the top of the tower). 

Measurement in Initial value Noise in 

% 

All nodes 0 0 2 500 4 no 

     yes 

0 0 0 0 0 no 

 

 

-y,-z 

displacement 

0 0 0 450 4 no 

     yes 

0 0 0 0 0 no 

0 0 0 420 1.7 yes 

 

result aero 

error% 

mass 

error

% 

0 0 2 500 4.19 0 0 

0.12 0.05 2.08 500.3 4.19 7.4 0.06 

-6.1 4.57 2.64 307.6 -2.32 382 42 

-0.81 -0.3 1.98 502.9 4.19 43 0.6 

-0.02 -0.88 1.96 504.9 4.2 44 1.4 

-3.05 -3.05 1.54 83 -2.2 216 84 

0.37 -0.92 1.75 491.7 4.19 51 1.66 

Table1. Results with Tikhonov’s regularization 

algorithm. 

The results in Table 1 show that the quality of the 

reconstruction depends on the initial value for the 

reconstruction. Good initial values, in particular for 

the mass imbalance; lead to good 

reconstructions.Reconstructing mass imbalances 

only, is inaccurate if we neglect existing of 

aerodynamic imbalances. However, it could provide 

us with an approximate mass imbalance that serves 

well as an initial guess for our new algorithm[17]. To 

finalize this algorithm we have taken a pitch angle 

deviation of 30of the blade B as well as a mass 

imbalance of 350 kgm located at blade B. The data g 

were calculated by the forward computation of  A(00, 

30, 0, 350 kgm,1200) and contaminated with 10% 

noise. The two step reconstruction from the noisy 

data resulted in A(-0.250, 2.80, 0.43, 342kgm,1210).  

Figure 7. Imbalance vibration and Torsional 

vibration across x-axis (ideal). 

The last result is calculated by using the initial value 

from the above mentioned algorithm. The 

performance of the algorithm was tested on several 

other experiments as seen in the table 2. 

Table 2. Results test with Tikhonov’s regularization 

and fminsearch 

In these examples, we have used vibrations of the top 

of the tower as artificial data. The data were 
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imbalance vibration

Torsional vibration

Original Parameters Initial values 

[0 3 0 350 2.09] [0 0 0 647 2.09] 

[2 -2 0 400 1.05] [0 0 0 798 1.05] 

reconstructed parameters aero 

error

% 

mass 

error

% 

-0.25   2.8 0.43 342 2.1 17 2 

1.99    -0.64 -0.06 402 1.05 48 0.5 
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disturbed by 10% noise. With the help of balancing 

principle, we have made a variation on the mass and 

aerodynamic imbalance in the first example 

according to the reconstruction (using the last 

reconstruction in Table 1). Therefore, the new pitch 

angles are given by [0, 0, 2] − [0.37, −0.92, 1.75] = 

[−0.37, 0.92, 0.25], and the residual mass imbalance 

is computed by 500𝑒𝑖4𝜋/3 + 491.7𝑒𝑖(4.1929−𝜋). Here, 

it is 8.5 kgm located at the phase angle −2.33 rad or 

226.50. Practically this is achieved by placing extra 

weights on the blades. Using these new parameters 

we have shown the correction of the pitch angles and 

the setting of balancing weights according to that 

reconstruction lead to a significant reduction of the 

vibration as shown in figure 8. 

Figure7. Vibrations in z-direction before and after 

balancing 

The results show clearly that the remaining vibrations 

are much less after balancing as seen in figure 7. 

CONCLUSION 

We have developed an algorithm that reconstructs 

both mass imbalances and aerodynamic imbalances 

arising from pitch angle errors in the rotor of a wind 

turbine. It is in this regards, this paper dealt with the 

mathematical determination of aerodynamic 

imbalances from pitch angle deviation of the blades 

and mass imbalances of the rotor. The mathematical 

approach has provided a reconstruction method that 

is implemented into a condition monitoring system. 

The method requires the knowledge of geometrical 

and physical parameters of the wind turbine and 

aerodynamic airfoil data of the blades. Through this 

approach we have recommended a Bereket Enerji’s 

wind turbine model of SINOVEL SL1500/82-1.5MW 

that provided us with the system mass and stiffness 

matrix. In addition, we have calculated the load 

vector that arises in the presence of imbalances using 

the blade element momentum method. We have 

solved the vibration equation that connects the 

vibrations of the system and the load explicitly. The 

results obtained during this investigation are 

encouraging since the initial guess for the mass 

imbalance is good enough. 

Both mass imbalance and aerodynamic imbalance 

generated lateral vibrations of the nacelle. The mass 

imbalance was eliminated by attaching balancing 

weights to the rotor; this was not possible for 

aerodynamic imbalances because the magnitude of 

aerodynamic imbalance strongly depends on the wind 

speed that has higher effect on torsional vibrations 

than mass imbalance. That’s why any attempt to 

nullify aerodynamic imbalance by counterweights 

couldn’t be helpful at all, that’s the reason why it was 

compulsory to find the actual cause of nacelle 

vibrations in order to select the appropriate technical 

measures. We finally confirm that the aerodynamic 

imbalances do not only excite nacelle vibrations but 

also increase wear and damage of vital components, 

reduce component lifetime, increase repair costs, 

reduce power output to a dangerous level and reduce 

profit.  
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